Relationship between induced fluid structure and boundary slip in nanoscale polymer films.
نویسنده
چکیده
The molecular mechanism of slip at the interface between polymer melts and weakly attractive smooth surfaces is investigated using molecular dynamics simulations. In agreement with our previous studies on slip flow of shear-thinning fluids, it is shown that the slip length passes through a local minimum at low shear rates and then increases rapidly at higher shear rates. We found that at sufficiently high shear rates, the slip flow over atomically flat crystalline surfaces is anisotropic. It is demonstrated numerically that the friction coefficient at the liquid-solid interface (the ratio of viscosity and slip length) undergoes a transition from a constant value to the power-law decay as a function of the slip velocity. The characteristic velocity of the transition correlates well with the diffusion velocity of fluid monomers in the first fluid layer near the solid wall at equilibrium. We also show that in the linear regime, the friction coefficient is well described by a function of a single variable, which is a product of the magnitude of surface-induced peak in the structure factor and the contact density of the adjacent fluid layer. The universal relationship between the friction coefficient and induced fluid structure holds for a number of material parameters of the interface: fluid density, chain length, wall-fluid interaction energy, wall density, lattice type and orientation, thermal or solid walls.
منابع مشابه
Shear rate threshold for the boundary slip in dense polymer films.
The shear rate dependence of the slip length in thin polymer films confined between atomically flat surfaces is investigated by molecular dynamics simulations. The polymer melt is described by the bead-spring model of linear flexible chains. We found that at low shear rates the velocity profiles acquire a pronounced curvature near the wall and the absolute value of the negative slip length is a...
متن کاملNonlinear Vibration Analysis of Single-Walled Carbon Nanotube Conveying Fluid in Slip Boundary Conditions Using Variational Iterative Method
In this paper, nonlinear dynamic behaviour of the carbon nanotube conveying fluid in slip boundary conditions is studied using the variation iteration method. The developed solutions are used to investigate the effects of various parameters on the nonlinear vibration of the nanotube. The results indicate that an increase in the slip parameter leads to a decrease in the frequency of vibration an...
متن کاملFluid structure and boundary slippage in nanoscale liquid
During the last ten years, there has been enormous interest in understanding transport phenomena in micro and nanofluidic systems and, in particular, in accurate prediction of fluid flows with slip boundary conditions at liquid-solid interfaces. In this chapter, we discuss recent results obtained from molecular dynamics simulations of fluids that consist of monomers or linear polymer chains con...
متن کاملSlip boundary conditions for shear flow of polymer melts past atomically flat surfaces.
Molecular dynamics simulations are carried out to investigate the dynamic behavior of the slip length in thin polymer films confined between atomically smooth thermal surfaces. For weak wall-fluid interactions, the shear rate dependence of the slip length acquires a distinct local minimum followed by a rapid growth at higher shear rates. With increasing fluid density, the position of the local ...
متن کاملSize-dependent Vibration and Instability of Magneto-electro-elastic Nano-scale Pipes Containing an Internal Flow with Slip Boundary Condition
Size-dependent vibrational and instability behavior of fluid-conveying magneto-electro-elastic (MEE) tubular nano-beam subjected to magneto-electric potential and thermal field has been analyzed in this study. Considering the fluid-conveying nanotube as an Euler-Bernoulli beam, fluid-structure interaction (FSI) equations are derived by using non-classical constitutive relations for MEE material...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 82 5 Pt 1 شماره
صفحات -
تاریخ انتشار 2010